High Throughput Process Development Tools at Novartis Pharma

High throughput tools and scale-down models are of increasing interest to the biopharmaceutical industry where they can be used to perform process research quickly and without the expense of running experiments at production or pilot-scales. Technologies are being developed and used to study both upstream processing and downstream processing steps and both will form sessions at BioProduction Europe 2015 (www.bio-production.com) to be held in Dublin in October.

One field of process research in which high throughput process development tools are particularly applicable is in the generation of process design spaces as part of process characterization activities. Process characterization studies are typically performed during late stage process development in order to develop robust process control strategies for process qualification and commercial manufacturing batches. Biopharmaceutical companies are increasingly adopting Quality by Design methodologies in order to characterize their bioprocesses. This ensures that when operating within their defined design space their manufactured products will have the necessary critical quality attributes for them to be safe and efficacious.

High Throughput Process Development Tools at Novartis Pharma

Jean Aucamp, novartis
Dr Jean Aucamp, Lab Head in Protein Processing at Novartis Pharma AG
says the following of Novartis’ use of high throughput techniques for developing chromatography steps, “High-throughput process development (HTPD) is an approach where experimentation can be parallelized and automated in order to investigate large process design spaces quickly. There are numerous ways to conduct chromatography studies in high-throughput mode. HTPD chromatography refers to protein purification studies performed using miniaturized chromatography columns and a liquid-handling work station. At Novartis this technology is used across all stages of development to support column purification studies and shorten project timelines”.

The challenge high throughput process development technologies present, however, is the extent to which they replicate the performance of the large-scale. If they poorly represent large-scale performance the design spaces generated could potentially be meaningless. Dr Aucamp says the following “It is well known that results obtained from chromatography studies performed in high-throughput mode do not compare directly to laboratory-scale data.” Novartis have conducted a series of fundamental studies looking at the discrepancy in process data between laboratory and high throughput technologies which will be presented at the BioProduction Europe Conference.

Describing the outcomes of the work Dr Aucamp said “A better understanding of the differences that lead to scale offsets was obtained. This understanding allowed the development of an approach where results from the different scales can be better related.”

Dr Aucamp’s presentation “Assessment and Implementation of HTPD Chromatography for Process Characterisation Studies” is scheduled for 5pm on 15th October as part of the Downstream Processing Track.

Have your say

To what extent has your organization implemented High Throughput Process Development? What are they key challenges you have experienced?

Dr Nick Hutchinson

Dr Nick Hutchinson

Join me at #Bioproduction15

Contact me at nick.hutchinson@parker.com

Dr Nick Hutchinson has a Masters and Doctorate in Biochemical Engineering from University College London, UK where he focused on laboratory tools for rapid bioprocess development and characterization. He then worked at Lonza Biologics in an R&D function investigating novel methods for large-scale antibody purification before moving to an operational role scaling-up and transferring manufacturing processes between Lonza sites in the UK, Spain and USA. Nick now works in Market Development at Parker domnick hunter where his focus is in bringing Parker’s strengths in Motion & Control to Bioprocessing. This will enable customers to improve the quality and deliverability of existing and future biopharmaceuticals.

Leave a Reply